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ABS TRACT

The necessary elements of the calculus for factorials as

developed by'Kurkjian and Zelen are described, modified where necessary,

and applied to the analysis of unbalanced n-way classifications with

fixed effects. Estimators for all main effect and interaction effects

parameters are obtained along with the associated variances. The sums

of squares for each effect eliminating all other effects is presented in a

form suitable for direct computation. This form results in considerable

computational saving over the method of fitting constants used in general

regression theory. The results are applied to the particular case of

proportional frequencies in the subclasses.



APPLICATIONS OF THE FACTORIAL CALCULUS TO GENERAL

UNEQUAL NUMBERS ANALYSES/I

W. T. Federer 'a nd M. Zelen/3

1. Introduction

This paper is the second in a series of papers which applies the calculus

for factorial arrangements developed by Kurkjian and Zelen [1962] to various

problems in the analysis of experiment designs. The first paper dealing with

applications [1963] was devoted to the analysis of block and direct product

designs. The main object of this paper is to apply this special calculus to an

alternate way of treating the analysis of variance with unequal numbers. The

usual way this is done is by the method of fitting constants; cf Federer [1957],

Yates [1934]. The use of the special methods developed here leads to substantial

computational savings over the method of fitting constants.

Section two of this paper contains the necessary parts of the factorial calculus

which is the starting point of our investigation. Section three develops the

general theory for unequal numbers and section four shows the resulting

simplification when the frequencies are proportional.

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-ll-022-ORD-2059.
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-2- #393

2. Elements of the Factorial Calculus

The notation and special operations used in this paper will be a modified

version of the calculus for factorial arrangements introduced in Kurkjian and

Zelen [196Z]. The modifications are straightforward generalizations which are

useful in treating the case of unequal numbers.

Consider a factorial experiment with the n factors {As} such that factor

A has m levels for s = 1, 2, ... , n . The ith treatment combination

consists of the n-tuple i = (il, y 2 , ... i ) where i denotes a particular

n
level from factor A . The number of treatment combinations is v = II m

S s=l S

Let Y denote a v x 1 random vector following a multivariate normal distribution

with

(Z.1) E(Y) 1i• + t

2 -1
(2.Z) V(Y) = c N

The quantity 1 is a vx x vector having unity elements, ý± is a scalar, t is

a v x 1 vector of (fixed) treatment effect; and the matrix N is a v x v diagonal

matrix having only non-zero diagonal elements n. which denote the number of1

thobservations on the i treatment. The elements of t are not linearly

independent, but satisfy a single linear restraint which will be described later.

Also define {as}S s = i1 2, ... , n, to denote vectors, termed primitive

elements, such that

a' [as(l), as(?),. as(ms)]
s ° °
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New elements can be formed with the operation of the symbolic direct product

(SDP) which is denoted by ® The SDP between a and a is definedP g

to be

[ap a %] --[ap (1,1), ap (1, 2), ... , ap (lmg,
[ap q [apg( pq pq 1

(2.3)

apq(2,1), a pq ... , apq (mp pg apq (m mq)]

Note that the subscript refers to the primitive elements involved and the argument

is a vector of two elements which are ordered lexographically. The lexographical

order is to hold the first element of the argument fixed at 1 and run through the

levels 1, 2, .. ., mq of Aq; then change the first argument to level 2 of Ap

and run through the levels of A ; etc. The SDP is also defined for more than

two primitive elements in the same way; i.e., a PD aq () ar, etc. The

elements of a D a denote the vector whose elements are the parametersP q

associated with the two factor interaction between factors A and Ag; the

elements of a a denote the vector associated with the three factor

interactions among factors Ap, Aq, and A , etc.'

Let x be a variable which takes on the values 0 or 1. We define
s

a for x 1
x s s

a as

1 for x =0

and use the convention that as® 1= a . Then, if x =(x• x., "'", x) n a
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generalized interaction may be denoted by

a xI x 2 axn
1 0 aI (x Z '" ann

xn x
ax1 21a

and will have m = IInm components.

i=l

The model relating the treatment effects to the interaction parameters can

be written by defining

I for x =I

SS

s 1 ,for x = 0;

x I x x
S1I 1xIXZ X ... XI1 2 n

where I is m xm identity matrix and 1 is an m x 1 column vector having

all elements equal to unity. Then we can write

(2.4) t ix ax
x

where x '(x Xz. Xn) and the summation refers to all the Z2 1

x
n-digit binary numbers x excluding x = (0, 0, ...0 0) . The components of t

are taken in the same lexographical ordering as the n-factor interaction.
x

The interaction parameters a are not linearly independent. Let u be a
s

th
1 xn vector with all elements equal to zero except for the s element which is

equal to unity and define r by
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I I I

vr =(iIX 1  X... X 1) N(I 1 X1 2i X... X 1n)

We then define the m x m diagonal matrix5 S

m u u

(2.5) W : - (I S) s 2, , n
S rv

The elements of W are proportional to the number of times the various levels5

of factor A appear.
s

Then a convenient set of restraints among the parameters may be taken to

be

W a 0 p =1 2, ... n;
p p p

p q

[W XW [a a =0,, p0 q =1, Z, ... n

SI X l 1p qq.

(2.6)

1 xI:x... xi
2 n

" ' 2 n [W1 ... Wq [a a.(.

I XI X ... X1

'With these restraints, "it can eas.ly be shown that

(Z. 7) [ 1x 1 x... X 1 n w] x... XW nt 20n
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We shall find it convenient to use the following notational convention.

Let Z (s = 1, Z, ri) be matrices and x = (x• X2 ... I Xn) be an n-digit

binary number. Then, we shall always write Z and Z(x) to denote

SxI x z xn
S Zx =ZI Xz2 X . n XZn

(2.8)

Z(x) =Zs I X Zs 2 X ... XZs for those xs =x .... x P

When the Z are scalar quantities (say) Z : z then
5 .5

x(2.9) z = z(x)

3. The General Theory of Unequal Numbers

In this section we. shall develop the general theory for unequal numbers. Our

procedure will be to first find estimates for the various interaction parameters and

their"variances and then derive the associated sum of squares for use in the

analysis of variance. The estimation of the various interactions constitutes no real

problem; the difficult problem is to determine the appropriate sums of squares.

Let W = W X W X.. X W ; then it can easily be shown that the estimablen

functions for t. may be estimated from1

(3.1) t= [I1- ,W ]Y = I v ]y

where 1 is a v x I column vector having all elements unity, " = 1 1 ; and I

is the v x v identity matrix.
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Consequently we have

(3.2) var 2 [1 1  -

Define the m x m matrix M by
S S S.

(3. 3) Ms S S sW S]Ws1

Also let

. 4 *.M for X I=
{s S

Ms=

1 for x =0
(3.4) S S.

x x"-x I 2z
M M XM X... X M

1 2 n

xWe note that M may also be written as

xxMx = M(x) (IX)'

where M(x)=M XM X... XM and x =x .... x =1
sI .' sP si s S

with the remaining x = O; i.e. M(x) is the direct product of those M for
s s

which x = 1 . We also record for reference
s

M W =m I -I WMs s s s s s

(3.5) M W a = m a
SS S S S

Ms Ws 1 =0
M W1.S
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After some algebra one can show that

(3.6) a W- wTýv

and

(3.7) var a x [MX WN- w(Mx)) 2 /vI

.X

Note that the var a may be written as

^-1 x 2 zvara =M(x)[(i)' WN WI M(x) IV

The variance can be further simplified. For this purpose define

W if x =1
5 sx

Isifx=O0

ss
Ix = if X 0

s

S~l

Then the quantity [ (IX W] may be written

. n x n x -x -x
HI)W:I X (I s), WS = W(x) H X (I s W s W W(x)(I:)w-

S=l S=l

The diagonal matrix [(Ix) W N. 1 WIx] can also be written

Wx N- WIx W(x) R(x) W(x)

where

(3.8) R(x) = (IX)' Wl-x N-1 Wl-x Ix
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Hence the variance of a is

22z
(3.9) var a = [M(x)W(x)R(x)W(x) M(x)](r /v

Note that R(x) and W(x) are diagonal matrices.

It remains to find the sum of squares associated with a . We shall

find this making use of a result on quadratic forms recently given by Rao [1962]

Lemma. Let X = (X I X2 , ... I Xn) have a singular multivariate normal

distribution with E(X) = 0 and varX 2 Z where the rank of Z is f (f< n)

2
Then a necessary and sufficient condition for the quadratic form X'S X/0- to

have a chi-square distribution with f degrees of freedom is that S be a real

symmetric n x n matrix having the properties that

(i) S -- S

(ii) 3=3s •

We now turn our attention to finding the matrix S of the above lemma when

23 M(x) W(x) R(x) W(x) M(x) . We point out that the degrees of freedom
Xn x

associated with a is f(x) = fi(m-l) s (rank of var a x) . Hence there will
S=l 1

exist at least r(x) = m(x) - f(x) linearly independent non-estimable functions
of a . These non-estimable functions will be denoted by

(3.10) K'(x) W(x) ax

where K'(x) is r(x) x m(x), has rank r(x) , and W(x) denotes the direct

product of those W for which x = 1s s
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Define the m(x) x m(x) matrix V(x) by

W(x) M(x) R- (x) K(x) V(x) K(x) U (x)

(3.11)

K'(x) R-1(x) 0 U(x) K'(x) 0

where

(3.12) U(x) = [K'(x) R- (x) K(x)]-l

It can be verified that the matrix S of the lemma is

(3.13) S = v V(x) R-1 (x) V(x)

Therefore, the required sum of squares is

(3.14) vZ (ax)' {V(x) R- 1(x) V(x)}(NX)

The above sum of squares still requires knowledge of the matrix V(x) which

is not known explicitely. Using (3. 5), we can write

m a =M W a
S S S S S

and therefore

(3.15) m(x) ax = M(x) W(x) ax

Substituting (3.15) in (3.14) results in

v 2 -x W x- Mxx-) (a ) WxMxVxR(xVxMxWxl(
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Using the relations of a matrix to its inverse gives

W(x) M(x) V(x) + R- (x) K(x) U(x) K'(x) -I

K'(x) R- (x) V(x) = O .

Consequently,

W(x) M(x) V(x) R- (x) V(x) M(x)W(x) = R- (x) [I - K(x) U(x) K'(x) R- (x)]

which follows from the fact that the matrix in square brackets in idempotent.

Therefore the sum of squares can be written asv x{ 1}
(3.16) (m-- x) )a() R- (x) [I - K(x) U(x)K'(x) R-(x)] } (x)

Since R(x) is a diagonal matrix, the main computational labor is in computing

the r(x) x r(x) inverse matrix

-1 -1
U(x) = [K'(x) R (x) K(x)]

The sums of squares for main effects may be written explicitely as r(x) = 1

In this case for (say) a s

K'(x) = , W(x) = W

R =R(x)5

=(W X1WX...XIx... X1 W)N (W1XWIX...xI x...xW1 2 2 s n n 1 s n n

u R-
Us:(s s
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The sum of squares for the main effect associated with A is thus
s

(3.17) (-) as {R [I U ]

s s

4. Proportional Frequencies

As is well known, the case of proportional frequencies turns out to be

particularly simple. The case of proportional frequencies arises when

n
N=NIXN X... X N =H1 XN

s=l

where the N are such N is the direct product of all N
s I

Define n = 1 N I ; then the W quantities areS 5 S S 5

m
s

W ==- N
s n s

s

and

nNw=n xw =_

s=l S r

Consequently we have

x' - x 1 )NI =v Nx
W(x)R(x)W(x) =(Ix) WN- WI x _ N(x)

r rn(x)

and

var ; -x 2 [MI NI(MI ) XM 2 N (M 2 ) X... XMn N(M

r v
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Note that

n M forx =1
S SSsx 

x

MsS Ns(MsS)=

I n for x =0

Therefore the variance can be written as

2

(4.1) var a =- M(x)
rv

-x
as n =rv

The sum of squares associated with ax can easily be written by noting

that the second term in (3.16) is a null matrix. This can be demonstrated

by writing

(4.2) R- 1(x) =M(x) N(x)

v n (x)

and thus

K'(x) R -(x) ax -rm(x) K'(x) N(x) ax 0
v n (x)

The sum of squares associated with a is then

vx rv - x ( x)(4.3) (m--• ) (ax R-l(xY(a,= a Nx)a
n (x)



-14- #393

REFERENCES

1. Federer, \V. T. (1957), Variance and covariance analysis for

unbalanced alassifications, Biometrics 13, 333-62.

Z. Kurkjian, B. and Zelen, M. (1962), A calculus for factorial

arrangements, Ann. Math. Statist. 3, 600-619.

3. Kurkjian, B. and Zelen, M. (1963), Applications of the calculus

for factorial arrangements I: Block and direct product designs,

Biometrika 50, 1-11.

4. Rao, C. ?,. (1962), A note on the generalized inverse of a matrix

with applications to problems in mathematical statistics.

Jour. Roy. Stat. Soc. , B, 24, 152-158.

5. Yates, F. (1934), The analysis of multiple classifications with

unequal numbers in the different classes, T. Am. Statist. Assoc.

29, 51-66


